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Manipulate spins 
with light

Stanciu et. al., PR, 99, 047601 (2007)
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can be imaged
with x-rays!
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X-rays can be used to image 
spins              &           spin excitations

EF EF
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We can do this 
now

This cannot be 
done yet
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Emerging magnetic order in FeCoGd
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Fe 3d

low q
~100nm

high q  ~10nm

Summary

We see a new nanoscale form of 
magnetic order

It develops far from equilibrium

but

We do not know the nature of this 
magnetic order

Emerging magnetic order in FeCoGd



x-ray
probe

probe spin & charge 
distribution

Femtosecond X-Ray Holography of Charge & Spin 
Distributions

optical
pump
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probe spin & charge 
distribution

x-ray
excitation

What if we have a 
second x-ray 

pulse ?

Femtosecond X-Ray Holography of Charge & Spin 
Excitations

?
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probe spin & charge 
distribution

x-ray
excitation

What if we have a 
second x-ray 

pulse ?

Femtosecond X-Ray Holography of Charge & Spin 
Excitations

Stimulated 
emission
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Can we really do this ?

Rohringer, et al.
Nature 481, 488 (2012)

https://news.slac.stanford.edu/
press-release/scientists-create-

first-atomic-x-ray-laser
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We have indications that it 
works for solids below the 

damage threshold too!

Wu, Scherz, Stohr, Durr et al (unpublished)



probe spin & charge 
distribution

dynamics (transport, infrared/optical, and many
other spectroscopies) lack the required spatial re-
solution. Scanning near-field infrared microscopy
can circumvent this limitation (9–11). Specifically,
we probed coexisting phases in the vicinity of the
insulator-to-metal transition in vanadium dioxide
(VO2) at length scales down to 20 nm. This en-
abled us to identify an electronic characteristic of
theMott transition, namely divergent quasi-particle
mass in the metallic puddles, which would other-
wise have remained obscured in macroscopic
studies that average over the coexisting phases in
the insulator-to-metal transition regime.

One particular advantage of VO2 for the study
of electronic correlations is that the transition to
the conducting state is initiated by increasing the
temperature without the need to modify the
stoichiometry. The salient features of the first-
order phase transition that occurs at Tc ≈ 340 K
are the orders-of-magnitude increase in conduc-
tivity accompanied by a change in the lattice
structure (1). Compared to the high-temperature
rutile metallic (R) phase, the two main features
that distinguish the lattice in the low-temperature
monoclinic (M1) insulating phase are dimeriza-
tion (charge-ordering) of the vanadium ions into
pairs and the tilting of these pairs with respect to
the c axis of the rutile metal. The experiments on
VO2 films (12, 13) reported here reveal a strongly
correlated conducting state that exists within the
insulator-to-metal transition region in the form of
nanoscale metallic puddles. Electromagnetic re-
sponse of these puddles separated by the in-
sulating host displays the signatures of collective
effects in the electronic system, including diver-
gent optical effective mass and optical pseudo-
gap. These findings, which were not anticipated
by theoretical models, may also help to settle the
decades-long debate (1, 14–20) on the respective
roles played by the lattice and by the electron-
electron correlations in the insulator-to-metal
transition.

The gross features of the insulator-to-metal
transition in VO2 can be readily identified
through the evolution of the far-field optical
constants (13) obtained with use of spectroscopic
ellipsometry and reflectance (Fig. 1). The in-
sulating monoclinic phase (T ≤ 341Κ) displays a
sizable energy gap of about 4000 cm−1 (≈0.5 eV)
in the dissipative part of the optical conductivity,
s1(w). The T ≥ 360 K rutile metallic phase is
characterized by a broad Drude-like feature in the
optical conductivity, linear temperature depen-
dence of resistivity, and an extremely short elec-
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Fig. 1. The real part of the optical conductivity s1(w) =
we2ðwÞ
4p of VO2 is plotted as a function of

frequency for various representative temperatures. The open circle denotes the isosbestic (equal
conductivity) point for all spectra. (Inset) The temperature dependence of the real part of the
dielectric function e1 in the low-frequency limit (w = 50 cm−1).

Fig. 2. Images of the near-
field scattering amplitude over
the same 4-mm-by-4-mm area
obtained by s-SNIM operating
at the infrared frequency w =
930 cm−1. These images are
displayed for representative
temperatures in the insulator-
to-metal transition regime of
VO2 to show percolation in
progress. The metallic regions
(light blue, green, and red
colors) give higher scattering
near-field amplitude compared
with the insulating phase (dark
blue color). See (13) for details.
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x-ray
excitation

Vision of the ultimate XFEL experiment

x-ray
stimulated 
emission

image spin & charge 
excitations
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We need two
seeded, ‘phase locked’

XFEL beams (<10fs,0.1 mJ) 
with different polarization or 

energy !


